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ABSTRACT

A procedure is developed to determine approximate periodic solutions of autonomous and
non-autonomous systems. The trignometic collocation method (TCM) is formalized to allow for

the analysis analysis of relatively small order systems directly in physical coordinates. The TCM is
extended to large order systems by utilizing modal analysis in a component mode synthesis
strategy. The procedure was coded and verified by several check cases. Numerical results for two

small order mechanical systems and one large order rotor dynamic system are presented. The
method allows for the possibility of approximating periodic responses for large order forced and
self excited nonlinear systems.
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INTRODUCTION

Nonlinear phenomena of many forms are clearly present in all complicated machinery. The
future development and advancements in these machines depends strongly on our ability to
identify, understand, model, analyze and design with these various nonlinear mechanisms present.
Transient and steady state analysis capabilities are required with direct numerical integration,
presently the most popular tool. This work presents a method based on trignometric collocation for
approximating periodic solutions of forced systems and for locating limit cycles of self excited
systems. The use of modal analysis allows the method to be extended to large order systems.

Previous work on the steady state response of systems which include nonlinear
components is limited except by direct numerical integration. This can be very time consuming,
especially for large order systems, and is not particularly economical in parametric design
applications. It is really the only option available for transient analysis, however, and also serves
as a useful means for verifying final designs.

Some quantitative methods for steady state analysis of nonlinear systems include
perturbation techniques, describing function procedures, harmonic balance procedures, and
methods of weighted residuals. Perturbation techniques (Nayfeh, 1981) have a limited range of
applicability due primarily to high algebraic complexity for large order systems. They also require
the introduction of a small parameter, thus restricting the solution validity to systems with weak
nonlinearities. Describing function methods (Atherton, 1982) are a good choice for many problems
since they can accommodate non-analytic nonlinearities. They can be used, however, only when
higher harmonics are small compared to the fundamental component.

The harmonic balance method, (Hagedom, 1982), has been recently applied to the analysis

of engineering systems ( Yamauchi, 1983; Saito, 1985) and the preliminary results indicate that the
method may be quite effective. An alternate approach is the use of methods of weighted residuals
which have been used quite extensively in the past to solve nonlinear boundary value problems.
Some of these methods, which have been extended to the problem of determining periodic

response, include Galerkin's method (Urabe, 1965; Urabe and Reiter, 1966; Stokes, 1972) and the
Trignometric Collocation method (Samoilenko and Ronto, 1979).

The primary objective of this work is to formulate the mathematical procedures for the
analysis of periodic motion in nonlinear systems. The proposed procedure involves a coupling of
the Trignometric Collocation method (TCM) with modal analysis techniques, thereby effecting a
substantial reduction in the number of unknown quantifies in the iterative part of the solution

process.

1-14



MATHEMATICAL DEVELOPMENT

The focus of this research is on the TCM that was developed and formalized by Ronto
(Samoilenko and Ronto, 1979) with applicability to small order systems. Described below are the
essential features of the procedure for both non-autonomous and autonomous systems.

Trignometric Collocation Method

Many engineering systems can be modelled by a set of n nonlinear ordinary differential
equations of the non-autonomous form

x = f(x,t) (1)

where the RHS is continuous and periodic with a period T. It is required to determine a
periodic solution x(t) of Eq. (I). It is assumed that the required solution can be approximated by a
finite trigonometric series:

Ill

xo ,Z[
j=l

cos(jo)t) + I_ sin(j_)] (2)

where co is is the fundamental frequency. The unknown coefficients of the above series can be
ordered into a vector,

Ci = (a0, al, bl, a2, b2 ..... am, bm) T (3)

corresponding to each variable xi.

The collocation method essentially consists of substituting the assumed solution form, Eq.
(2), into the system state, Eq. (1), and requiring that the equations be identically satisfied at a
specified number of points, N. This gives rise to N,n nonlinear algebraic equations which must

be solved to obtain the unknown coefficients. For a unique solution, the following inequality
must be satisfied

N > (2m + 1) (4)

Rigorous investigations of the applicability and foundation of the TCM have been carried out by
Ronto (Samoilenko and Ronto, 1979), and only the formalism of the procedure is presented here.

The state variables can be evaluated at the collocation points in terms of the unknown
coefficients leading to the form:

O •

xI = T ci (5)

where,

•

Xj ( Xi (to)' Xi (tl)' ..... , Xi (IN))T= (6)

is a vector of values of the trignometric polynomial at the collocation points. The array T is an N *
( 2m + 1 ) transformation matrix whose elements are defined as:
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1 j=lTij cos [ (i- 1) jn / N ] j = 2, 4, ... (7)

sin [ (i-l) (j-l) n/N ] j = 3, 5, ...

The derivative of each state variable can be expressed in a trignometric series and is

obtained by differentiation of Eq. (2). Hence, the following relation, which is similar to Eq. (5), is
obtained:

O •

X i = coT D c i (8)

The array D is a (2m + 1 ) square tridiagonal matrix of the form:

0

0 +1

-1 0
0 +2

-2 0

0 +m

-m 0

(9)

and the elements are given by,

Di,i+ 1 = -Di+l, i = i / 2, i = 2, 3 ........ (2m)

The requirement that the set of system state equations, Eq. (1), be satisfied exactly at N
collocation points leads to N algebraic equations of the form:

coT D ei = fi(_T ¢i,tk) (10)

where fi is the vector of the ith function evaluated at the N collocation time points. Hence, the

collocation process yields N*n nonlinear algebraic equations in the (2m + 1 ) * n unknown
coefficients. These equations are then solved using a secant method from standard subroutine

packages of IMSL.

If the system state equations are autonomous, then Eq. (1) may be written as

x = f(x) (11)
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The frequency or frequencies of self-oscillation for such systems are unknown a priori. The
analysis procedure is essentially the same as in the non-autonomous systems and leads to a set of
nonlinear algebraic equations,

toT D c i "- fi(T ci) (12)

The number of unknown quantifies is increased by one, the unknown frequency, to [ (2m+l)*n +

1 ], and the number of collocation points must satisfy the following inequality to assure a unique
solution

N > (2m+l) + 1 (13)

Hence, this situation is a case of non-linear least squares and cannot be solved by the secant
method used for non-autonomous systems. An IMSL developed procedure, however, based on the
Levinberg-Marquardt algorithm for nonliunear curve-fitting can be applied to the autonomous
problem and has succesfully yielded satisfactory results, for several problems.

Rotor System Equations

The equations of motion for a typical multi-shaft flexible rotor system can be written in the
second order form

oo •

Mq + £)q + _Kq = QS + Qb(_b, qb) (13)

or equivalently in the first order form

_Ax + _Bx =F (14)

where

QS
q} , F= { }x = tq Qb

and

o]B = (15)
0

The linear forces of the system are included in the vector Q and the nonlinear component forces are

included in the sparse vector Qb. A direct application of the TCM to a large order system such as
Eq. (14) would almost always be computationally untenable. Thus, to obtain a mathematical model

that is sufficiently small for the TCM to be effective, it is necessary to reduce the order of the
original model.

It is propsosed here to develop a procedure to analyze the periodic motion of large order
structural systems with nonlinear supports or pseudo supports by using the TCM in conjunction
with modal analysis. This algorithm will reduce the original problem to a set of nonlinear algebraic
equations involving only the physical coordinates which are associated with the nonlinear
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supports. This would normally result in a susbstantial reduction in order hopefully rendering the
TCM computationaUy tenable.

The connectivity between the nonlinear coordinates and the system displacement is

specified by the connecticity matrix S and can be written as

b
q (t) = __S q(t) (16)

where qb is the displacement vector associated with the coordinates of the nonlinear supports. The
connectivity matrix S is a sparse matrix consisting mostly of zero elements and a few unity
elements that ensure that the displacements in the nonlinear supports are identical with the

displacements at the corresponding connection points of the linear system. Hence, Eq. (16) is a
statement of geometric displacement compatibility for the system.

Modal Analysis

The A and B arrays of Eq. (14) are not generally symmetric, thus both the right

eigenvectors Yi and adjoint left eigenvectors z i must be evaluated for use in a modal expansion.
These two sets of vectors satisfy the biorthoganality conditions

T Ay i = R. 5.. a)
Zj- l ij (17)

T
BYi = "_'R'5 b)Zj -- 1 1 IJ

where R i is the system norm associated with the eigenvalue _-i.

With the state vector defined in Eqs. (15), the system eigenvectors are of the form

{ _qri } { _'i li }
Yi = r i , Zi = li (18)

where r i and !i are the right and left displacement eigenvectors associated with the physical

coordinate vector q. The state response of Eq. (14) is represented by the modal expansion

2n

x = E Yi rli (19)
i=l

where Tli is the ith modal coordinate. Substitution of Eq. (19) into Eq. (14) and premultiplication

by zi T , using the biorthogonality conditions of Eq. (17), yield the 2n equations

• 1 iT QS
1_i - _'i 1_i = R_. i ( + Qb ) i = 1, 2, ..... 2n (20)

1

These equations are still coupled due to the nonlinear force vector Qb. For a large order system, it
is not normally necessary nor is it feasible to retain all the modal information when determining the

system steady state response. Usually only n lower modes are retained in the modal expansion of
Eq. (19), thus there are correspondingly n equations in Eq. (20).
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•SOLUTION PROCEDURE

Following the TCM procedure, periodic solution forms are assumed for the system
physical coordinates, the nonlinear subset of the system physical coordinates, and the generalized
coordinates in the modal expansion, i.e.,

j=l

a)

m

¢= _ + Z[ _ cos(0)jt)+ _ sin(_t)] b) (21)
j=l

m

rl = _ + Z[ a_cos(ojt)+ b_sin(_t)]
j=l

c)

By choosing N equally spaced collocation points and evaluating the variables of Eq. (21) at these
time points, the following set of relations is obtained

Oq = I C a)

%b = !Cb b) (22)

oq = I Eu c)

where the ith column of C corresponds to the variable qi (t) evaluated at each of the N collocation

points. The ith typical column of C is defined by Eq. (3). Similar definitions apply for the arrays of
Eqs. (22 b,c).

The unknown coefficient arrays (._,Cb,C_I) are dependent and are related through the

geometric displacement relation of Eq. (16) and the modal expansion of Eq. (19). From Eqs. (22
a,b) and (16),

I C b = I C ST (23)

and by utilizing the form of the system fight vectors, Eq. (18), the modal expansion for the system

physical coordinates may be written as

q = L ri _i -- r T! (24)
i=l

Thus, from Eq. (22a) and (24) the following relation between physical coordinate and normal
coordinate Fourier coefficients is obtained:

I C = T _ rT (25)
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The substitution of this constraint relation into Eq. (23) gives

Cb = _ rT _T (26)

The next step in establishing the solution is to apply the TCM procedure to the set of

pseudo modal equations, Eq. (20). Utilizing the equivalent form of Eqs. (5) and (8), Eq. (20) may
be written as

where:

T D ci'q -_T CiTI = °f i (27)

1
Of. n

t R.
1

! r QS Qbi ( (tl) + (tl))

iTi ( Q (tN) + Qb (tN))

(28)

The elements of the of i vector are the RHS values of Eq. (20) evaluated at the collocation points,

and are functions of the nonlinear displacements qb and velocities qb.

Equation (27) can be rearranged to the form

Ci_ = [ (0)D- _i I )-1 ( IT _D-1 ] IT ofi (29)

i = 1, 2 ..... n

which is a typical column of the array of modal coordinate Fourier coefficients, Crl. The

combination of relations (29) with Eq. (26) results in a set of nonlinear algebraic equations in terms

of Fourier coefficients for the physical coordinate subset qb.Thus, the size of the problem has

been substantitally reduced and the location of a solution is computationally more feasible.

The iterative procedure for estimating the Fourier coefficients Cb can be summarized in the

following steps:

1. Choose a starting value for C b.

2. Compute oqb using Eq. (22 b).

3. Compute _ using Eqs. (19).

4. Evaluate and update the value for C b using Eq. (26).

5. Check convergence between steps 1. and 4.

The procedure involves the solution of a set of nonlinear equations and its success depends upon
the effectiveness of the numerical routine utilized. The optimization routine based on the secant
method from the IMSL subroutine library proved to be very effective with convergence being
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achieved for a wide variety of starting points. The error norm in the algebraic equations appears to
be a reasonable measure of the solution accuracy.

NUMERICAL EXAMPLES

The results of analyzing three example systems are presented below. The first two are
relatively small order systems and are analyzed directly in terms of physical coordinates. The third

example is a larger order dual shaft rotor system that utilizes modal analysis in conjunction with the
TCM.

Journal - Hydrodynamic Bearing System

Consider a single rotating journal on a hydrodynamic bearing as illustrated in Fig. 1. With
reference to this figure, O is the bearing center, C is the geometric center of the journal, and c
represents the radial beating clearance. The mass center of the journal is assumed to be displaced
from the geometric center by the cg offset e. During rotation this offset gives rise to a rotating
unbalance force which is synchronous with journal spin frequency. The converging wedge that
arises due to the eccentricity of the journal gives rise to a pressure field in the fluid film that
supports the load.

The nondimensionalized equations of motion of the journal assume the form:

i*e

v = Fr cost_ + F t sint_ + u cos(t+_) + g
ee

w = F r sint_ - F t cost_ + u sin (t+[_)

(30)

In these equations, v and w represent the nondimensional displacement coordinates of the journal
center with respect to a fixed reference frame. The quantities g and u represent the gravity and
unbalance parameters, and Fr and F t represent the radial and tangential fluid film force components
acting on the journal.

Using short beating theory, Reynolds equation can be integrated to obtain closed form
expressions for the plain journal bearing force components, e.g. (Holmes, 1960). Thus,

F r = -B[ }x(l+2e2)E + 2e2(1-2_)]
( 1 - e 2 )5/2 ( 1 - e2 )2

(31)

F t = +B [ .-.-4e_ + _e(1-2@) ]
( 1 - e 2 )2 2 ( 1 - ¢2 )5/2

where, e = ( v 2 + ,v 2 )1/2 , _ = arctan ( w / v ) '_

and B is a _eadng parameter that is dependent on the fluid viscosity, and geometry of the bearing.

Clearly F r and F t are highly nonlinear functions of the response variables. Typically, the

journal equations, Eqs. (30) are linearized about the static equilibrium position. The resulting linear
response corresponds to an elliptical orbit centered at the equilibrium position. Application of the
TCM to this problem can yield an orbit which is quite different the linearized response as displayed
in Fig. 2.
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An interestingfactrevealedby theTCM isthatthe higherharmonics in theresponse of the

journal may not be negligible as contrasted with many nonlinear problems. In the results presented,
at least 8 harmonics were required to obtain close agreement between the TCM and numerical

integration. In this case, many analytical procedures, such as the Describing Function Method,
which neglect harmonics above the fundamental would not adequately describe the dynamics of the

journal.

Flow Induced Vibration

Consider the problem of quasi-steady analysis of the transverse galloping of a long prism of

square cross-section (Blevins, 1977; Parkinson and Smith, 1964).The equation of motion for the
single degree-of-freedom oscillator is

,, U 2y + 2_y" + y -- n cf (32)

where U is the non-dimensional velocity of wind and y is the non-dimensional vibration

displacement. The non-dimensional aerodynamic force coefficient cf is obtained by experimental

measurements in a wind tunnel and can be approximated by a polynomial in ct, the angle of attack,

or equivalently (y" / U).

= [AUy, B C D 1cf n _. (y.)3 + _._ (y.)5 _ ___ (y.)7 (33)

From a curve-fit to experimental values, A = 2.69, B = 168, C = 6270, D = 59,900 (for a
Reynolds number = 22,300) ; n is a mass parameter, which is a function of the prism dimensions

and the density of air, _ is the linear viscous damping coefficient.
The second-order nonlinear autonomous equation (32) has been shown to exhibit self-

excited oscillations and an analysis by the method of averaging was carded out by (Parkinson,
1964). It was found that the amplitude (A1) vs wind velocity curves for various values of the

damping coefficient collapse into a single curve if normalized by nA1 / 2_.
The first harmonic amplitudes obtained by the application of TCM are shown in Fig. 3.

As is evident from the figure, the response exhibits a hysteresis loop. A choice of different initial

guesses helped the procedure converge to the multiple solution points. It is identical to the figure in
Parkinson and Smith (1964) and indicates that the collocation procedure developed here is valid for

problems with multiple solution points.

Dual Shaft Rotor System

The dual-shaft rotor system with configuration shown in Fig. 4 includes a nonlinear

bearing at station 6 and excited by rotating unbalance in shaft 1 and a static side load at station 6.
Rotor (1,2) is modelled as a (6,4) station, (24,16) degree - of - freedom, (5,3) element assembly
with stations as indicated in Fig. 4. Detailed rotor configuration data is provided in (Nelson and
Alam, 1983). The rotating assemblies are connected to a rigid foundation by linear bearings at
stations 1 and 7 and are interconnected by a linear bearing between stations 4 and 10. A nonlinear

bearing with cubic stiffness variation and linear viscous damping connects shaft 1 to the rigid
foundation at station 6. The nonlinear bearing force components are given by the relations:
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where

s/in.

v

Fy =-(klr + kzr3)r - c_v

W . CwWFz =-(klr + kzr3) r

r = (v2 + w 2 )1/2

(34)

, and k 1 = 50,000 lbf/in, k 3 = 50 *10 9 lbf/in 3, and cv = Cw = 20 lbf-

The unbalance distribution of the rotating assembly consists of a single concentrated
unbalance at station 2 with a cg eccentricity of 0.95 mils. In addition, a static side load acts on the
system at station 6. Shaft 1 spins at 80,000 Rpm and shaft 2 co-rotates at 120,000 Rpm.

It should be noted that the linear subsystem is not totally constrained. Thus, an "artificial support"
is added at station 6 to eliminate a singularity. This influence is then subsequently removed from
the model by subtracting its influence in the nonlinear forces. A value of 10,000 lbf / in at station 6

was arbitrarily selected for this system. The nonlinear radial force versus displacement is shown in
Fig. 5. The linear bearing stiffnesses are 150,000, 50,000, and 100,000 lbf/in at station 1, 4-10,
and 7 respectively.

Displacement orbits, as determined using the TCM procedure, for this system are plotted in Fig. 6
for two stations and a side load of 100 lbf acting in the negative z direction. The orbit distortion
clearly indicates the presence of higher harmonics in the response.

CONCLUSIONS

A numeric-analytic procedure based on the trignometric collocation method has been

developed and implemented for estimating the periodic response of engineering systems. The
procedure allows for estimating periodic forced response and for locating limit cycles of self-
excited systems. A component mode synthesis strategy coupled with the TCM extends the method
to large order system application.

Three example analyses are presented. Two of small order in physical coordinates and the
third on larger order using the modal strategy. Preliminary indications are that this method may be
very effective in estimating the periodic response of both small and large order systems. Additional
work is required to further test its generality, to handle systems with subharmonic response and, to
ascertain the stability of the located periodic responses. Study on the speed and accuracy of the
necessary computational work should also lead to improvement in the utility of the approach.
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